

LA-UR-15-27727

Approved for public release; distribution is unlimited.

Title: Survey and Analysis of Multiresolution Methods for Turbulence Data

Author(s): Pulido, Jesus J.

Livescu, Daniel

Woodring, Jonathan Lee Ahrens, James Paul Hamann, Bernd

Intended for: Web

Issued: 2015-10-05

Jesus Pulido

Graduate Student, Department of Computer Science

University of California, Davis

LANL Summer 2015, CCS-2, Mentor: Daniel Livescu

Survey and Analysis of Multiresolution Methods for Turbulence Data

Jesus Pulido^{1,2}, Daniel Livescu², Jonathan Woodring², James Ahrens², and Bernd Hamann¹

¹Institute for Data Analysis and Visualization, University of California, Davis, CA, 95616-8562, U.S.A.
²Los Alamos National Laboratory, Los Alamos, NM 87544, USA

Submitted to Elsevier Computers & Fluids

Introduction

General

- Interest for multi-resolution representation of turbulence data
 - Feature discovery + tracking (coherent feature extraction)
 - Influence on simulation algorithms
- Downscaling of data (compression) for faster data analysis
 - For in-situ or post-processing applications
 - Faster post-processing of data for visualization

Contributions

- Analyzed and compared the effectiveness of Haar, Biorthogonal B-spline, and Daubechies wavelets, Coiflets, Surfacelets and Curvelets with respect to direct numerical simulation (DNS) data.
- Visualized and evaluated numerical accuracy of original data and derived quantities using limited amounts of coefficients on reconstruction
- Identified strengths and weaknesses of each technique and gave recommendations on the usage of these multiresolution methods

Method

Improvements made this summer

- Added parallel computation support for wavelet framework
 - Near linear-time speedup
- Implemented parallel sort for fast wavelet coefficient sorting (for N% coefficient thresholding)
- Added edge-case handling for wavelet decomposition and reconstruction
 - Can treat data as parabolic, mirror, zero-fill, etc.
- Re-implemented the Dual-Tree Complex wavelet transform in C++ and included it into our analysis pipeline

Summary

Test Type	Best Method	Runner-up	
Velocity PDF	Cubic B-spline	Daubechies-5	
Vorticity PSNR and MSE	Cubic B-spline	Quadratic B-spline	
Vorticity PDF	Cubic B-spline	Quadratic B-spline	
Strain rate tensor	Quadratic B-spline	Cubic B-spline	
Density visualization	Surfacelets	Cubic B-spline	
Density PSNR and MSE	Cubic B-spline	Quadratic B-spline	
Density PDF	Cubic B-spline	Daubechies-5	
Density power spectrum	Dual-Tree	Quintic B-Spline	
Isosurface Visualization	Surfacelets	Curvelets	
Curvature quantities	Cubic B-spline	Surfacelets	
Surface signatures	All methods except Haar		
Performance	Surfacelets	Haar	

Revision resubmitted to Elsevier Computers & Fluids

Enabling Remote Visualization and Scale Analysis of Large Turbulence Databases

Jesus Pulido^{1,2}, Daniel Livescu², Randal Burns³, Curtis Canada², James Ahrens², and Bernd Hamann¹

¹Institute for Data Analysis and Visualization, University of California, Davis, CA, 95616-8562, U.S.A.

²Los Alamos National Laboratory, Los Alamos, NM 87544, USA

³Johns Hopkins University

Previously submitted to IEEE SciVis '15

Introduction

General

- Remote analysis and visualization of raw large turbulence data is challenging
- The Johns Hopkins Turbulence database (JHTDB) simplifies access to over 230 Terabytes of direct numerical simulation data through commodity hardware
- A demand exists for a visualization framework that adds high-speed remote visualization for large datasets

Contributions

- Remote visualization support and additional compute capabilities were added to the database cluster
- Wavelet compression was introduced at the data-level to reduce access cost, bandwidth, and improve visualization latency
- Wavelet compression used to reduce memory footprint of datasets for visualization

JHTDB: http://turbulence.pha.jhu.edu/

Johns Hopkins Turbulence Database

Original Pipeline

Remote Remote Remote User 2 User 1 User n Web Services Server Computationa Computational Computational Module Module Module Database Database Database Database Server n Server 2 Server 1 Cluster

Augmented Pipeline

Remote visualization is achieved through Paraview and Paraview Web integration

JHTDB: http://turbulence.pha.jhu.edu/

Remote Visualization

Web (HTML 5) interface

Efficiency (Performance)

▶ Scenario: A single 512³ grid size subset of a 1024³ dataset is accessed and visualized by a single user.

TABLE I. PERFORMANCE RESULTS

Operation	Original (512)	Scale 1 (256)	Scale 2 (128)	Scale 3 (64)
Wavelet decompose	0 s	17.8 s	20.6 s	20.8 s
Wavelet reconstruct	0 s	23.3 s	23.2 s	23.3 s
Visualize volume	25.7 s	3.01s	0.22 s	0.02 s
Visualize isosurfaces	171.0 s	12.1 s	0.91 s	0.15 s
Total time	196.7 s	56.21 s	44.93 s	44.27 s
RAM used	4526 MB	865 MB	308 MB	178 MB
Est. Concurrent users	<14	<75	<212	<368

Intel Xeon E5440 @ 2.83 Ghz / 64GB RAM

cubic B-spline wavelets

Tests and Results

Efficiency (Performance)

Scenario: A single 512³ grid size sy et of a 1024³ dataset is accessed and visualize by a si user.

Ope Wavelet dec Wavelet recop	and these are only Serial wavelet results, parallel benchmarks will be better!! 20.8 s 23.3 s					
Visus	y		s	0.02 s		
Visualize isosurfaces				0.15 s		
Total time	196.	56.	44.93 s	44.27 s		
RAM used	4526 N	865 MB	308 MB	178 MB		
Est. Concurrent users	<14	<75	<212	<368		

Intel Xeon E5440 @ 2.83 Ghz / 64GB RAM

Quality

 Density component of a dataset is decomposed into 6 scales using cubic B-spline wavelets

Scale-based wavelet analysis

Original

▶ Reconstruction of individual scales

Scale-based wavelet analysis

Scale 2

▶ Reconstruction of individual scales

Scale-based wavelet analysis

▶ Reconstruction of individual scales

Scale 3

Scale-based wavelet analysis

Scale 4

▶ Reconstruction of individual scales

Scale-based wavelet analysis

▶ Reconstruction of individual scales

Scale 6

Questions? Thank you!